Respuesta :
Answer:
Friend A
[tex]\hat p_A= \frac{100}{400}=0.25[/tex]
[tex]z=\frac{0.25 -0.333}{\sqrt{\frac{0.333(1-0.333)}{400}}}\approx -3.47[/tex]
Friend B
[tex]\hat p_B= \frac{20}{120}=0.167[/tex]
[tex]z=\frac{0.167 -0.333}{\sqrt{\frac{0.333(1-0.333)}{120}}}\approx -3.80[/tex]
Friend C
[tex]\hat p_C= \frac{65}{300}=0.217[/tex]
[tex]z=\frac{0.217-0.333}{\sqrt{\frac{0.333(1-0.333)}{300}}}\approx -4.17[/tex]
So then the best solution for this case would be:
-3.47 (100 out of 400; 25%), -3.80 (20 out of 120; 16.7%), -4.17 (65 out of 300; 21.7%)
Step-by-step explanation:
Data given and notation
n represent the random sample taken
X represent the number of scissors selected for each friend
[tex]\hat p=\frac{X}{n}[/tex] estimated proportion of scissors selected for each friend
[tex]p_o=\frac{1}{3}=0.333[/tex] is the value that we want to test
[tex]\alpha[/tex] represent the significance level
z would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value (variable of interest)
Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that the proportion that the friend will pick scissors is less than 1/3 or 0.333, the system of hypothesis would be:
Null hypothesis:[tex]p\geq 0.333[/tex]
Alternative hypothesis:[tex]p < 0.333[/tex]
When we conduct a proportion test we need to use the z statistic, and the is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].
Calculate the statistic
Since we have all the info requires we can replace in formula (1) like this:
Friend A
[tex]\hat p_A= \frac{100}{400}=0.25[/tex]
[tex]z=\frac{0.25 -0.333}{\sqrt{\frac{0.333(1-0.333)}{400}}}\approx -3.47[/tex]
Friend B
[tex]\hat p_B= \frac{20}{120}=0.167[/tex]
[tex]z=\frac{0.167 -0.333}{\sqrt{\frac{0.333(1-0.333)}{120}}}\approx -3.80[/tex]
Friend C
[tex]\hat p_C= \frac{65}{300}=0.217[/tex]
[tex]z=\frac{0.217-0.333}{\sqrt{\frac{0.333(1-0.333)}{300}}}\approx -4.17[/tex]
So then the best solution for this case would be:
-3.47 (100 out of 400; 25%), -3.80 (20 out of 120; 16.7%), -4.17 (65 out of 300; 21.7%)