A right rectangular prism's edge lengths are 2 1 2 inches, 2 inches, and 6 inches. How many unit cubes with edge lengths of 1 3 inch can fit inside the prism?

Respuesta :

Answer:

810 cubes

Step-by-step explanation:

step 1

Find the volume of the rectangular prism

The volume of the rectangular prism is

[tex]V=LWH[/tex]

we have

[tex]L=2\frac{1}{2}\ in=2+\frac{1}{2}=\frac{5}{2}\ in[/tex]

[tex]W=2\ in\\H=6\ in[/tex]

substitute

[tex]V=(\frac{5}{2})(2)(6)[/tex]

[tex]V=30\ in^3[/tex]

step 2

Find the volume of the cube

The volume of the cube is

[tex]V=b^3[/tex]

where

b is the length side of the cube

we have

[tex]b=\frac{1}{3}\ in[/tex]

substitute

[tex]V=(\frac{1}{3})^3[/tex]

[tex]V=\frac{1}{27}\ in^3[/tex]

step 3

Find out how many unit cubes with edge lengths of 1/3 inch can fit inside the prism

Divide the volume of the prism by the volume of the cube

[tex]30:\frac{1}{27}=30(27)=810\ cubes[/tex]

Q&A Education