What is the magnitude of the force required to accelerate an electron of mass 9.1×10–31 kg from rest to a speed of 2.0×107 m/s for a distance of 0.50 cm?

Respuesta :

Answer:

[tex]3.64\times 10^{-14} N[/tex] is the magnitude of the force required to accelerate an electron of given mass.

Explanation:

Initial velocity of the electron = u

Final velocity of the electron = v = [tex]2.0\times 10^7 m/s[/tex]

Acceleration of the electron = a =?

Distance covered by electron= s = 0.50 cm =  0.005 m ( 1 cm = 0.01 m)

Using third equation of motion :

[tex]v^2-u^2=2as[/tex]

[tex](2.0\times 10^7 m/s)-0^2=2\times a\times 0.005 m[/tex]

[tex]a=4\times 10^{16} m/s^2[/tex]

Mass of an electron = [tex]m=9.1 \times 10^{-31} kg[/tex]

Force on moving electron = F

[tex]F = m\times a[/tex]

[tex]=9.1 \times 10^{-31} kg\times 4\times 10^{16} m/s^2=3.64\times 10^{-14} N[/tex]

[tex]3.64\times 10^{-14} N[/tex] is the magnitude of the force required to accelerate an electron of given mass.

The magnitude of the force required to accelerate an electron is [tex]3.64 \times 10^{-18}N[/tex]

According to Newton's second law, the formula for calculating the required force is expressed as:

  • F = ma
  • m is the mass of the body = [tex]9.1 \times 10^{-31} kg[/tex]
  • a is the acceleration of the body

Get the required acceleration;

[tex]v^2=u^2+2as\\(2.0 \times 10^7)^2=0^2+2(0.005)a\\4.0 \times 10^{14}=0.01a\\a=4.0\times 10^{12}m/s^2[/tex]

Geet the magnitude of the force required:

[tex]F=9.1\times 10^{-31} \times 4.0 \times 10^{12}\\F=36.4 \times 10^{-19}N\\F=3.64 \times 10^{-18}N[/tex]

Hence the magnitude of the force required to accelerate an electron is [tex]3.64 \times 10^{-18}N[/tex]

Learn more on magnitude of force here: https://brainly.com/question/4404327

Q&A Education