The solutions are [tex]x=15, x=-8[/tex] and [tex]x=9[/tex]
Explanation:
Part a: The equation is [tex]\frac{1}{3} (5x-9)=2(\frac{1}{3} x+6)[/tex]
Let us find the value of x.
Multiply the terms within the bracket, we get,
[tex]\frac{5}{3} x-3=\frac{2}{3} x+12[/tex]
Subtracting both sides by [tex]\frac{2}{3} x[/tex], we have,
[tex]\frac{3}{3} x-3=12[/tex]
Adding both sides by 3,
[tex]x=15[/tex]
Thus, the solution of the equation [tex]\frac{1}{3} (5x-9)=2(\frac{1}{3} x+6)[/tex] is [tex]x=15[/tex]
Part b: The equation is [tex]4(3x+5)-3=9x-7[/tex]
Multiply the terms within the bracket, we get,
[tex]12x+20-3=9x-7[/tex]
Subtracting both sides by 9x, we have,
[tex]3x+17=-7[/tex]
Subtracting both sides by 17,
[tex]3x=-24[/tex]
Dividing both sides by 3, we have,
[tex]x=-8[/tex]
Thus, the solution of the equation [tex]4(3x+5)-3=9x-7[/tex] is [tex]x=-8[/tex]
Part c: The equation is [tex]5(x+7)-3(x-4)=7x+2[/tex]
Multiply the terms within the bracket, we get,
[tex]5x+35-3x+12=7x+2[/tex]
Adding the like terms, we have,
[tex]2x+47=7x+2[/tex]
Subtracting both sides by 2 and 2x, we get,
[tex]45=5x[/tex]
Dividing both sides by 5, we have,
[tex]x=9[/tex]
Thus, the solution of the equation [tex]5(x+7)-3(x-4)=7x+2[/tex] is [tex]x=9[/tex]