Chromium crystallizes with a body-centered cubic unit cell. The radius of a chromium atom is 125 pm . Calculate the density of solid crystalline chromium in grams per cubic centimeter.

Respuesta :

Answer:

[tex]\rho=7.15\ g/cm^3[/tex]

Explanation:

The expression for density is:

[tex]\rho=\frac {Z\times M}{N_a\times {{(Edge\ length)}^3}}[/tex]

[tex]N_a=6.023\times 10^{23}\ {mol}^{-1}[/tex]

M is molar mass of Chromium = 51.9961 g/mol

For body-centered cubic unit cell , Z= 2

[tex]\rho[/tex] is the density  

Radius = 125 pm = [tex]1.25\times 10^{-8}\ cm[/tex]

Also, for BCC, [tex]Edge\ length=\frac{4}{\sqrt{3}}\times radius=\frac{4}{\sqrt{3}}\times 1.25\times 10^{-8}\ cm=2.89\times 10^{-8}\ cm[/tex]

Thus,  

[tex]\rho=\frac{2\times \:51.9961}{6.023\times \:10^{23}\times \left(2.89\times 10^{-8}\right)^3}\ g/cm^3[/tex]

[tex]\rho=7.15\ g/cm^3[/tex]

The density of solid crystalline chromium will be "7.15 g/cm³".

According to the question,

Radius,

  • 125 pm or [tex]1.25\times 10^{-8} \ cm[/tex]

Molar mass of Chromium,

  • M = 51.9961 g/mol

For body-centered,

  • Z = 2

For BCC,

The edge length will be:

= [tex]\frac{4}{\sqrt{3} }\times radius[/tex]

= [tex]\frac{4}{\sqrt{3} }\times 1.25\times 10^{-8}[/tex]

= [tex]2.89\times 10^{-8} \ cm[/tex]

hence

The expression for density will be:

→  [tex]\rho = \frac{Z\times M}{N_a(Edge \ length)^3}[/tex]

By substituting the values, we get

      [tex]= \frac{2\times 51.9961}{6.023\times 10^{23}\times (2.89\times 10^{-8})}[/tex]

      [tex]= 7.15 \ g/cm^3[/tex]

Thus the above approach is right.

Learn more:

https://brainly.com/question/23711097

Q&A Education