A mouse runs along a baseboard in your house. The mouse's position as a function of time is given by x(t)=pt 2+qt, with p = 0.36 m/s2and q = -1.10 m/s . Determine the mouse's average speed between t = 1.0 s and t = 4.0 s. I have tried everything and the answer is not 0.40 m/s

Respuesta :

Answer: the average speed of the rat from the information given above is 0.7m/s

Explanation:

position is given as

x(t) = pt² + qt

finding the diffencial of x(t) with respect to t, we have

d(x(t))/dt = 2pt + q

we substitute the p = 0.36m/s² and q= -1.10 m/s

d(x(t))/dt = 2(0.36)t + (-1.10)

so, at t= 1s

d(x(t))/dt = 2*(0.36)*1 - 1.1 = 0.72 - 1.1 = -0.38m/s

at t= 4s

d(x(t))/dt = 2*(0.36)*4 - 1.10 = 2.88 - 1.10 = 1.78 m/s

To find the average speed,

average speed = (V1 + V2)/ 2

average speed = (1.78 + (-0.38))/2 = 0.7m/s

The speed is defined as the distance per unit of time. The unit of speed is m/s. The speed is a scalar quantity which means it only depends on the magnitude.

According to the question, The average speed of the mouse is 0.7m/s

The solution of the question is as follows:-

The required equation is:-

[tex]x(t) = pt^2 + qt[/tex]

The Finding the differential of x(t) with respect to t, we have

[tex]\frac{dxt}{dt} = 2pt + q[/tex]

Put the value p = 0.36m/s² and q= -1.10 m/s

[tex]\frac{d(x(t)}{dt} = 2(0.36)t + (-1.10)[/tex]

so, at t= 1s

After solving it [tex]2*(0.36)*1 - 1.1 = 0.72 - 1.1 = -0.38m/s[/tex]

so,at t= 4s

After solving it =[tex]2*(0.36)*4 - 1.10 = 2.88 - 1.10 = 1.78 m/s[/tex]

The formula of average speed = [tex]\frac{(V1 + V2)}{2}[/tex]

[tex]= \frac{(1.78 + (-0.38))}{2} = 0.7m/s[/tex]

Hence, the average speed is 0.7m/s

For more information, refer to the link:-

https://brainly.com/question/22610586

Q&A Education