Respuesta :

The complete question:

Harold uses the binomial theorem to expand the binomial [tex](3x^5 -\dfrac{1}{9}y^3)^4[/tex]

(a)    What is the sum in summation notation that he uses to express the expansion?

(b)    Write the simplified terms of the expansion.

Answer:

(a). [tex](3x^5 -\dfrac{1}{9}y^3)^4=$\sum_{k=0}^{n} \binom{4}{k}(3x^5)^{4-k}( -\dfrac{1}{9}y^3)^k $[/tex]

(b).[tex](3x^5 -\dfrac{1}{9}y^3)^4=81x^{20}-12x^{15}y^3+\dfrac{2x^{10}y^6}{3}-\dfrac{4x^5y^9}{243}+\frac{y^{12}}{6561}[/tex]

Step-by-step explanation:

(a).

The binomial theorem says

[tex](x+y)^n=$\sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^k $[/tex]

For our binomial this gives

[tex]\boxed{(3x^5 -\dfrac{1}{9}y^3)^4=$\sum_{k=0}^{n} \binom{4}{k}x^{4-k}y^k $}[/tex]

(b).

We simplify the terms of the expansion and get:

[tex]$\sum_{k=0}^{n} \binom{4}{k}(3x^5)^{4-k}y^k $= \binom{4}{0}(3x^5)^{4-0}(-\dfrac{1}{9}y^3 )^0+\binom{4}{1}(3x^5)^{4-1}(-\dfrac{1}{9}y^3 )^1+\\\\\binom{4}{2}(3x^5)^{4-2}(-\dfrac{1}{9}y^3 )^2+\binom{4}{3}(3x^5)^{4-3}(-\dfrac{1}{9}y^3 )^3+\binom{4}{4}(3x^5)^{4-4}(-\dfrac{1}{9}y^3 )^4[/tex]

[tex]$\sum_{k=0}^{n} \binom{4}{k}(3x^5)^{4-k}(-\frac{1}{9}y^3 )^k $= (3x^5)^{4}+4(3x^5)^{3}(-\frac{1}{9}y^3 )+6(3x^5)^{2}(-\frac{1}{9}y^3 )^2+\\\\4(3x^5)(-\frac{1}{9}y^3 )^3+(-\frac{1}{9}y^3 )^4[/tex]

[tex]\boxed{(3x^5 -\dfrac{1}{9}y^3)^4=81x^{20}-12x^{15}y^3+\dfrac{2x^{10}y^6}{3}-\dfrac{4x^5y^9}{243}+\frac{y^{12}}{6561} }[/tex]

Q&A Education