A transverse wave on a string is described by the following wave function.y = (0.090 m) sin (px/11 + 4pt)(a) Determine the transverse speed and acceleration of an element of the string at t = 0.160 s for the point on the string located at x = 1.40 m.Your response differs from the correct answer by more than 10%. Double check your calculations. m/sm/s2(b) What are the wavelength, period, and speed of propagation of this wave?msm/s

Respuesta :

Explanation:

(a) It is known that equation for transverse wave is given as follows.

                 y = [tex](0.09 m)sin(\pi \frac{x}{11} + 4 \pi t)[/tex]

Now, we will compare above equation with the standard form of transeverse wave equation,

                 y = [tex]A sin(kx + \omega t)[/tex]

where,    A is the amplitude = 0.09 m

              k is the wave vector = [tex]\frac{\pi}{11}[/tex]

              [tex]\omega[/tex] is the angular frequency = [tex]4\pi[/tex]

              x is displacement = 1.40 m

              t is the time = 0.16 s

Now, we will differentiate the equation with respect to t as follows.

The speed of the wave  will be:

                   v(t) = [tex]\frac{dy}{dt}[/tex]

                v(t) = [tex]A \omega cos(kx + \omega t)[/tex]

        v(t) = [tex](0.09 m)(4\pi) cos(\frac{\pi \times 1.4}{11} + 4 \pi \times 0.16)[/tex]

          v(t) = -0.84 m/s

The acceleration of the particle in the location is

            a(t) = [tex]\frac{dv}{dt}[/tex]

           a(t) = [tex]-A \omega 2sin(kx + \omega t)[/tex]

           a(t) = [tex]-(0.09 m)(4 \pi)2 sin(\frac{\pi \times 1.4}{11} + 4\pi \times 0.16)[/tex]

           a(t) = -9.49 [tex]m/s^{2}[/tex]

Hence, the value of transverse wave is 0.84 m/s and the value of acceleration is 9.49 [tex]m/s^{2}[/tex] .

(b)  Wavelength of the wave is given as follows.

               [tex]\lambda = \frac{2\pi}{k}[/tex]

              [tex]\lambda = (frac{2\pi}{\frac{\pi}{11}) [/tex]

              [tex]\lambda[/tex] = 22 m

The period of the wave is

             T = [tex]\frac{2 \pi}{\omega}[/tex]

             T = [tex]\frac{2 \pi}{4 \pi}[/tex]

                = 0.5 sec

Now, we will calculate the speed of propagation of wave as follows.

                    v = [tex]\frac{\lambda}{T}[/tex]

                       = [tex]\frac{22 m}{0.5 s}[/tex]

                       = 44 m/s

therefore, we can conclude that wavelength is 22 m, period is 0.5 sec, and speed of propagation of wave is 44 m/s.

Q&A Education