Which equation is the inverse of 5 y + 4 = (x + 3) squared + one-half?
y = one-fifth x squared + six-fifths x + eleven-tenths
y = 3 plus-or-minus StartRoot 5 x + seven-halves EndRoot
Negative 5 y minus 4 = negative (x + 3) squared minus one-half
y = negative 3 plus-or-minus StartRoot 5 x + seven-halves EndRoot

Respuesta :

Answer:

The correct option is the last option d.) y = negative 3 plus-or-minus StartRoot 5 x + seven-halves EndRoot

Step-by-step explanation:

the given equation is [tex]5y + 4 =(x+3)^{2} + \frac{1}{2}[/tex]

Therefore we can write [tex]5y\hspace{0.1cm} = (x+3)^{2} + \frac{1}{2} - 4 \hspace{0.3cm} \Rightarrow \hspace{0.2cm} 5y = (x+3)^{2} - \frac{7}{2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} y = \frac{(x+3)^{2}}{5} - \frac{7}{10}[/tex]

To find the inverse of the above function let us replace x with y and y with x.

Therefore we get

[tex]x = \frac{(y+3)^{2}}{5} - \frac{7}{10}[/tex]

Now we write the above equation with only y on the Left hand side and we will obtain the inverse of the given function

[tex]y = \pm \sqrt{5 (x + \frac{7}{10} )} \hspace{0.1cm} - \hspace{0.1cm} 3 \hspace{0.1cm} \Rightarrow\hspace{0.1cm} y = \pm \sqrt{5x + \frac{7}{2} } - \hspace{0.1cm} 3 \hspace{0.1cm}[/tex]

Therefore the correct option is the last option d.) y = negative 3 plus-or-minus StartRoot 5 x + seven-halves EndRoot , [tex]y = \pm \sqrt{5x + \frac{7}{2} } - \hspace{0.1cm} 3 \hspace{0.1cm}[/tex]

Answer:

y = negative 3 plus-or-minus StartRoot 5 x + seven-halves EndRoot

Step-by-step explanation:

Q&A Education