Respuesta :
Answer:
The equation is [tex]y=-3x-5[/tex]
Step-by-step explanation:
We are given;
- The equation of a line 3y = x-4
- A point (-2,1)
Assuming the question requires we determine the equation of a line perpendicular to the given line and passing through the point given.
Step 1: Determine the slope of the given line
To determine the slope from an equation requires we write the equation in the form, y = mx + c, where m will be the gradient.
In this case;
[tex]3y = x - 4\\ y = \frac{1}{3}x-\frac{4}{3}[/tex]
Therefore, the slope is [tex]\frac{1}{3}[/tex]
Step 3: Determine the slope of the line in question
We know that the product of the slope of two perpendicular line is -1
That is;
m₁ × m₂=-1
Thus;
1/3 × m₂ -1
Hence; m₂ = -3
Step 3: Determine the equation of the line in question;
We have its slope, m₂ = -3
A point (-2, 1)
Taking another point (x,y)
Thus;
[tex]\frac{y-1}{x--2}=-3\\y-1 =-3(x+2)\\y-1 = -3x-6\\y=-3x-5[/tex]
Therefore, the required equation is [tex]y=-3x-5[/tex]
The equation of the line perpendicular to the line and passing through the point is y = -3x - 5
Equation of a line
Given the equation 3y = x - 4
Find the slope of the line
y = 1/3 x - 4/3
The slope of the line is 1/3 and the slope of the line perpendicular is -3
Substitute the point (-2, 1) and the slope into equation
y - y1 = m(x-x1)
y - 1 = -3(x+2)
y - 1 = -3x - 6
y = -3x - 5
Hence the equation of the line perpendicular to the line and passing through the point is y = -3x - 5
Learn more on equation of a line here; https://brainly.com/question/13763238