The exact circumference of the circle is [tex]7 \frac{49}{150} k m[/tex]
The approximate circumference of the circle is [tex]7.33 k m[/tex]
Explanation:
The diameter of the circle is [tex]2 \frac{1}{3} \mathrm{km}[/tex]
Now, we shall find the circumference of the circle.
The formula to determine the circumference of the circle is given by
[tex]C=\pi d[/tex]
Where C is the circumference , [tex]\pi[/tex] is 3.14 and [tex]d=2 \frac{1}{3} \mathrm[/tex] is the diameter of the circle.
The exact circumference of the circle is given by
[tex]\begin{aligned}C &=\pi d \\&=(3.14)\left(2 \frac{1}{3}\right) \\&=(3.14)\left(\frac{7}{3}\right) \\&=\frac{21.98}{3}\end{aligned}[/tex]
Multiply both numerator and denominator by 100, we get,
[tex]C=\frac{2198}{300} \\C=\frac{1099}{150}[/tex]
Converting [tex]\frac{1099}{150}[/tex] into mixed fraction, we get,
[tex]C=7 \frac{49}{150}[/tex]
Thus, the exact circumference of the circle is [tex]7 \frac{49}{150} k m[/tex]
The approximate value of the circumference can be determined by dividing the value [tex]\frac{1099}{150}[/tex]
[tex]C=\frac{1099}{150}=7.327[/tex]
[tex]C=7.33km[/tex]
Thus, the approximate circumference of the circle is [tex]7.33 k m[/tex]