Respuesta :

Answer:

See below

Step-by-step explanation:

We have that: [tex]\cot \theta=-\frac{2}{17}[/tex], then the reciprocal is [tex]\tan \theta=-\frac{17}{2}[/tex]

Applying the Pythagoras, we have [tex]h^2=17^2+2^2[/tex]

[tex]h^2=289+4=293[/tex]

[tex]h=\sqrt{293}[/tex]

Sine is opposite/hypotenuse

[tex]\sin \theta=\frac{2}{\sqrt{293}}=\frac{2\sqrt{293}}{293}[/tex]

Cosine is adjacent/hypotenuse

[tex]\cos \theta=\frac{17}{\sqrt{293}}=\frac{17\sqrt{293}}{293}[/tex]

The reciprocal of sine

[tex]\csc \theta=\frac{\sqrt{293}}{2}[/tex]

The reciprocal of cosine is

[tex]\sec \theta=\frac{\sqrt{293}}{17}[/tex]

Ver imagen kudzordzifrancis
Q&A Education