(6)The first-order rate constant for the decomposition of N2O5, N2O5(g) 2NO2(g) + O2(g)At 70C is 6.810-3s-1. Suppose we start with 0.0250 mol of N2O5(g) in a volume of 1.0 L. (a)How many moles of N2O5 will remain after 2.5 min

Respuesta :

Answer:

0.009 moles

Explanation:

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given that:

The rate constant, k = [tex]6.8\times 10^{-3}[/tex] s⁻¹

Initial concentration [tex][A_0][/tex] = 0.0250 mol

Final concentration [tex][A_t][/tex] = ?

Time = 2.5 min = 2.5 x 60 seconds = 150 sec

Applying in the above equation, we get that:-

[tex][A_t]=0.0250e^{-6.8\times 10^{-3}\times 150}\ moles=0.025\times \frac{1}{e^{\frac{51}{50}}}\ moles=\frac{0.025}{2.77319}\ moles=0.009\ moles[/tex]

Q&A Education