Answer:
0.009 moles
Explanation:
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration
Given that:
The rate constant, k = [tex]6.8\times 10^{-3}[/tex] s⁻¹
Initial concentration [tex][A_0][/tex] = 0.0250 mol
Final concentration [tex][A_t][/tex] = ?
Time = 2.5 min = 2.5 x 60 seconds = 150 sec
Applying in the above equation, we get that:-
[tex][A_t]=0.0250e^{-6.8\times 10^{-3}\times 150}\ moles=0.025\times \frac{1}{e^{\frac{51}{50}}}\ moles=\frac{0.025}{2.77319}\ moles=0.009\ moles[/tex]