If a bacteria population starts with 80 bacteria and doubles every three hours, then the number of bacteria after t hours is n = f(t) = 80 · 2t/3.

(a) Find the inverse of this function. Explain its meaning.
(b) When will the population reach 10,000? (Round your answer to one decimal place.)

Respuesta :

Answer:

[tex]f^{-1}(x)=3\frac{ln(\frac{t}{80})}{ln(2)}[/tex]

It will take 20.9 hours to reach 10000

Step-by-step explanation:

[tex]f(t)=80(2)^{\frac{t}{3}}[/tex]

To find inverse of the function , replace f(x) with y

[tex]y=80(2)^{\frac{t}{3}}[/tex]

swap the variables

[tex]t=80(2)^{\frac{y}{3}}[/tex]

solve the equation for y

[tex]t=80(2)^{\frac{y}{3}}\\\\\frac{t}{80} =(2)^{\frac{y}{3}}[/tex]

take ln on both sides

[tex]ln(\frac{t}{80} )= \frac{y}{3} ln(2)\\\\\frac{ln(\frac{t}{80} }{ln(2)} =\frac{y}{3}\\3\frac{ln(\frac{t}{80} }{ln(2)} =y[/tex]

the inverse function is

[tex]f^{-1}(x)=3\frac{ln(\frac{t}{80})}{ln(2)}[/tex]

for part b plug in 10000 for t in f^-1(x)

[tex]f^{-1}(10000)=3\frac{ln(\frac{t}{80} }{ln(2)} \\f^{-1}(10000)=3\frac{ln(\frac{10000}{80} }{ln(2)} \\=20.89[/tex]

It will take 20.9 hours to reach 10000

Q&A Education