A box contains 11 two-inch screws, of which 4 have a Phillips head and 7 have a regular head. Suppose that you select 3 screws randomly from the box with replacement. Find the probability there will be more than one Phillips head screw.

Respuesta :

Answer:

The probability that there will be more than one Phillips head screw = 0.1803 .

Step-by-step explanation:

We are given that there are 11 two-inch screws in a box of which 4 have a Phillips head and 7 have a regular head.

We are selecting 3 screws randomly from the box with replacement, so the probability that there will be more than one Phillips head screw is given by :

  • Probability of selecting two Phillips head screw.
  • Probability of selecting three Phillips head screw.

Now P(selecting 2 Phillips head screw with replacement) is given by :

 Selecting 2 Phillip head screw = [tex]\frac{4}{11}[/tex] *  [tex]\frac{4}{11}[/tex] = [tex]\frac{16}{121}[/tex]

      P(selecting three Phillips head screw) = [tex]\frac{4}{11}[/tex] *  [tex]\frac{4}{11}[/tex] *  [tex]\frac{4}{11}[/tex] = [tex]\frac{64}{1331}[/tex]

Therefore, Probability that there will be more than one Phillips head screw

                        =   [tex]\frac{16}{121}[/tex] + [tex]\frac{64}{1331}[/tex] = [tex]\frac{240}{1331}[/tex] = 0.1803 .

Q&A Education