Respuesta :

Answer:

The solution is -5 or 11

Step-by-step explanation:

We are given the equation;

[tex]4(3-x)^\frac{4}{3}-5=59[/tex]

We are supposed to solve the equation;

Taking 5 to the other side;

[tex]4(3-x)^\frac{4}{3}=59+5[/tex]

[tex]4(3-x)^\frac{4}{3}=64[/tex]

Dividing both sides by 4

[tex](3-x)^\frac{4}{3}=\frac{64}{4}[/tex]

[tex](3-x)^\frac{4}{3}=16[/tex]

We can cube both sides;

[tex]((3-x)^\frac{4}{3})^3=16^3[/tex]

[tex](3-x)^4=4096[/tex]

Then we can get the fourth root on both sides of the equation;

[tex]\sqrt[4]{ (3-x)^4} =\sqrt[4]{4096}[/tex]

We get;

[tex]3-x=+8 or -8[/tex]

Solving for x

[tex]3-x=8 and 3-x=-8[/tex]

Therefore;

[tex]x=-5 or 11[/tex]

Therefore, the solution is -5 or 11

Q&A Education