A plane travels 240 miles on a bearing of N 10° E and then changes its course to N 67° E and travels another 180 miles. Find the total distance traveled north and the total distance traveled east. (Round each answer to the nearest whole number.)

Respuesta :

Answer:

Step-by-step explanation:

Given

Plane travels 240 miles [tex]10^{\circ}[/tex] East of North

Position vector [tex]\vec{r_1}=240(\cos(10)\hat{j}+\sin (10)\hat{i})[/tex]

Then the plane travels 180 miles [tex]67^{\circ}[/tex] East of North

[tex]\vec{r_{21}}=180(\cos(67)\hat{j}+\sin (67)\hat{i})[/tex]

[tex]\vec{r_2}=\vec{r_{21}}+\vec{r_1}[/tex]

[tex]\vec{r_2}=\left ( 240\sin (10)+180\sin (67)\right )\hat{i}+\left ( 240\cos (10)+180\cos (67)\right )\hat{j}[/tex]

[tex]\vec{r_2}=\left ( 207.36\right )\hat{i}+\left ( 306.68\right )\hat{j}[/tex]

Total distance traveled in North direction is given by coefficient of \hat{j}

i.e. North[tex]=306.68\ miles\approx 307\ miles[/tex]

Total distance traveled in East direction is given by coefficient of \hat{i}

East [tex]=207.36\ miles\approx 207\ miles[/tex]

Q&A Education