Nitrogen dioxide (NO2) cannot be obtained in a pure form in the gas phase because it exists as a mixture of NO2 and N2O4. At 26Β°C and 0.80 atm, the density of this gas mixture is 2.2 gΒ·Lβˆ’1. What is the partial pressure of each gas?

Respuesta :

Answer: The partial pressure of [tex]NO_2[/tex] is 0.426 atm and that of [tex]N_2O_4[/tex] is 0.374 atm

Explanation:

Assuming ideal gas behavior, the equation follows:

PV = nRT

We know that:

[tex]\text{Density}=\frac{\text{Mass}}{\text{Volume}}[/tex]

Rearranging the above equation:

[tex]M=\frac{dRT}{P}[/tex]

where,

d = density of gas mixture = 2.2 g/L

R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]

T = temperature = [tex]26^oC=[26+273]K=299K[/tex]

P = pressure of the mixture = 0.80 atm

M = average molar mass of mixture

Putting values in above equation, we get:

[tex]M_{avg}=\frac{2.2g/L\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 299}{0.80atm}\\\\M_{avg}=67.5g/mol[/tex]

We know that:

Molar mass of [tex]NO_2[/tex] = 46 g/mol

Molar mass of [tex]N_2O_4[/tex] = 92 g/mol

Let the mole fraction of [tex]NO_2[/tex] be 'x' and that of [tex]N_2O_4[/tex] be '(1-x)'

For average molar mass calculation:

[tex]M_{avg}=M_{NO_2}\chi_{NO_2}+M_{N_2O_4}\chi_{N_2O_4}[/tex]

Putting values in above equation:

[tex]67.5=46x+92(1-x)\\\\x=0.533[/tex]

Mole fraction of [tex]N_2O_4[/tex] = (1 - x) = (1 - 0.533) = 0.467

To calculate the partial pressure, we use the equation given by Raoult's law, which is:

[tex]p_{A}=p_T\times \chi_{A}[/tex]

  • For [tex]NO_2[/tex] :

We are given:

[tex]p_T=0.80atm\\\chi_{NO_2}=0.533[/tex]

Putting values in above equation, we get:

[tex]p_{NO_2}=0.80atm\times 0.533\\\\p_{NO_2}=0.426atm[/tex]

  • For [tex]N_2O_4[/tex] :

We are given:

[tex]p_T=0.80atm\\\chi_{N_2O_4}=0.467[/tex]

Putting values in above equation, we get:

[tex]p_{N_2O_4}=0.80atm\times 0.467\\\\p_{N_2O_4}=0.374atm[/tex]

Hence, the partial pressure of [tex]NO_2[/tex] is 0.426 atm and that of [tex]N_2O_4[/tex] is 0.374 atm

Q&A Education