Blood is accelerated from rest to 25.00 cm/s in a distance of 2.10 cm by the left ventricle of the heart. How long does the acceleration take? (To solve this problem, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking your units.)

Respuesta :

Answer:

Time taken, t = 0.16 seconds

Explanation:

Given that,

Initial speed of blood, u = 0

Final speed of blood, v = 25 cm/s = 0.25 m/s

Distance, d = 2.1 cm = 0.021 m

Using first equation of motion as :

v = u + at

u = 0

[tex]v=at\\0.25 =at[/tex]

Let t is the time taken. Using second equation of motion as :

[tex]d=ut+\dfrac{1}{2}at^2[/tex]

[tex]d=\dfrac{1}{2}at\times t[/tex]

[tex]t=\dfrac{2d}{at}[/tex]

Since, at = 0.25

So,

[tex]t=\dfrac{2\times 0.021}{0.25}[/tex]

t = 0.16 seconds

So, the time taken by the blood to accelerate is 0.16 seconds.    

Q&A Education