You have a remote-controlled car that has been programmed to have velocity v⃗ =(−3ti^+2t2j^)m/s, where t is in s. At t = 0 s, the car is at r⃗ 0=(3.0i^+2.0j^)mWhat is the x component of the car's position vector at 10 s?What is the y component of the car's position vector at 10 s?What is the x component of the car's acceleration vector at 10 s?What is the y component of the car's acceleration vector at 10 s?

Respuesta :

Answer:

The y-component of the car's position vector is 670m/s.

The x-component of the acceleration vector is -3, and the y-component is 40.

Explanation:

The displacement vector of the car with velocity

[tex]\boldsymbol{v}= (-3t\boldsymbol{i}+2t^2\boldsymbol{j})m/s[/tex]

is the integral of the velocity.

Integrating [tex]\boldsymbol{v}[/tex] we get the displacement vector [tex]\boldsymbol{d}[/tex]:

[tex]\boldsymbol{d}=(-\dfrac{3}{2}t^2\boldsymbol{i}+\dfrac{2}{3}t^3\boldsymbol{j} )[/tex]

Now if the initial position if the car is

[tex]\boldsymbol{r}= (3.0\boldsymbol{i}+2.0\boldsymbol{j})[/tex]

then the displacement of the car at time [tex]t[/tex] is

[tex]\boldsymbol{d(t)}= \boldsymbol{r+d}[/tex]

[tex]\boxed{\boldsymbol{d(t)}=(-\dfrac{3}{2}t^2+3.0\boldsymbol{i}+\dfrac{2}{3}t^3+2.0\boldsymbol{j} )}[/tex]

Now at [tex]t=10s[/tex], we have

[tex]\boxed{\boldsymbol{d(t)}=(-147\boldsymbol{i}+670\boldsymbol{j} )}m[/tex]

The y-component of the car's position vector is 670m/s.

The acceleration vector is the derivative of the velocity vector:

[tex]\boldsymbol{a(t)}=\dfrac{d\boldsymbol{v(t)}}{dt} =(-3\boldsymbol{i}+4t\boldsymbol{j})[/tex]

and at [tex]t=10s[/tex] it is

[tex]\boldsymbol{a(t)}=(-3\boldsymbol{i}+40\boldsymbol{j})m/s^2[/tex]

The x-component of the acceleration vector is -3, and the y-component is 40.

Q&A Education