Respuesta :

Answer:

Option D:  - 6;  [tex]$ \textbf{-5}\frac{\textbf{5}}{\textbf{2}} $[/tex];   [tex]$ \textbf{-4}\frac{\textbf{1}}{\textbf{5}} $[/tex].

Step-by-step explanation:

The sequence is defined by:

[tex]$ A(n) = -6 + (n - 1)\bigg( \frac{1}{5} \bigg ) $[/tex]

To find the first term of the sequence simply substitute n = 1.

First term of the sequence:

[tex]$ A(1) = -6 + (1 - 1)\bigg( \frac{1}{5} \bigg ) $[/tex]

        [tex]$ = - 6 $[/tex]

Fourth term of the sequence:

[tex]$ A(2) = -6 + (4 - 1) \bigg ( \frac{1}{5} \bigg) $[/tex]

        [tex]$ = - 6 + 3\bigg( \frac{1}{5} \bigg) $[/tex]

        [tex]$ = \frac{- 30 + 3}{5} $[/tex]

        [tex]$ = \frac{-27}{5} $[/tex]

        [tex]$ = \frac{-25 - 2}{5} $[/tex]

        [tex]$ = - 5 - \frac{2}{5} $[/tex]

        [tex]$ = -5\frac{2}{5} $[/tex]   is the required answer.

Tenth term of the sequence:

[tex]$ A(10) = - 6 + (10 - 1) \bigg( \frac{1}{5} \bigg) $[/tex]

         [tex]$ = - 6 + 9\bigg( \frac{1}{5} \bigg) $[/tex]

         [tex]$ = \frac{-30 + 9}{5} $[/tex]

         [tex]$ = \frac{-21}{5} $[/tex]

         [tex]$ = \frac{-20 - 1}{5} $[/tex]

         [tex]$ = - 4 - \frac{1}{5} $[/tex]

         [tex]$ = -4\frac{1}{5} $[/tex]  is the required answer.