Respuesta :
Answer:
A. [tex]|\vec v_t|=52.42\ m/s[/tex]
B. [tex]\theta=256.74^o[/tex]
Explanation:
Velocity Vector
The velocity vector has two components. Depending on the reference system they could be magnitude and direction in the polar coordinates or x-component and y-component in the rectangular coordinates system.
We are given two velocities in the form of magnitude-direction. The plane's velocity goes south at 39 m/s. The zero reference for angles is pointed East, so the south direction has a 270° angle respect to the reference. If the polar coordinates are known, the rectangular coordinates are computed as
[tex]v_{xp}=|v_p|cos\alpha_p[/tex]
[tex]v_{yp}=|v_p|sin\alpha_p[/tex]
[tex]Since\ |v_p|=39 m/s,\ \alpha_p=270^o,[/tex]
[tex]v_{xp}=39cos\ 270^o=0[/tex]
[tex]v_{yp}=39sin\ 270^o=-39[/tex]
Thus, the velocity of the plane is
[tex]\vec v_p=0\hat i-39\hat j[/tex]
The wind is blowing toward the southwest. It means its angle is 225° (3rd quadrant):
[tex]v_{xw}=|v_w|cos\alpha_w[/tex]
[tex]v_{yw}=|v_w|sin\alpha_w[/tex]
[tex]v_{xw}=17cos\ 215^o=-12.02[/tex]
[tex]v_{yw}=17sin\ 215^o=-12.02[/tex]
Thus, the velocity of the wind is
[tex]\vec v_w=-12.02\hat i-12.02\hat j[/tex]
Now we perform the vector addition to compute the plane's final speed
[tex]\vec v_t=\vec v_p+\vec v_w[/tex]
[tex]\vec v_t=0\hat i-39\hat j-12.02\hat i-12.02\hat j[/tex]
[tex]\vec v_t=-12.02\hat i-51.02\hat j[/tex]
A) The magnitude of the total velocity is
[tex]|\vec v_t|=\sqrt{(-12.02)^2+(-51.02)^2}[/tex]
[tex]\boxed{|\vec v_t|=52.42\ m/s}[/tex]
B) The direction angle is given by
[tex]\displaystyle \tan\theta=\frac{-51.02}{-12.02}=4.24[/tex]
[tex]\theta=arctan\ 4.24[/tex]
[tex]\theta=76.74^o[/tex]
This angle is west of south, we must add 180° to express it in due reference, thus
[tex]\boxed{\theta=256.74^o}[/tex]