Defining the radius of area throat to inlet we would have that the proportional relationship would be [tex]\frac{A_2}{A_1}.[/tex]
This equation or relationship is obtained from continuity where
[tex]A_1V_1 = A_2V_2[/tex]
[tex]\frac{V_2}{V_1} = \frac{A_2}{A_1}= 0.8[/tex]
Now applying the Bernoulli equation between inlet and throat section we have,
[tex]\frac{p_1}{\rho g}+ \frac{v_1^2}{2g}+z_1=\frac{p_2}{\rho g}+ \frac{v_2^2}{2g}+z_2[/tex]
Here,
[tex]z_1 = z_2[/tex]
Then for a Venturi duct, the velocity of the airplane [tex]V_1[/tex] will be
[tex]V = \sqrt{\frac{2(p_1-p_2)}{\rho[(\frac{A_1}{A_2})^2-1]}}[/tex]
Our values are,
[tex]\frac{A_2}{A_1} = 0.8[/tex]
[tex]\rho = 0.002377slug/ft^3[/tex]
[tex]p_1 = 2116lb/ft^2[/tex]
[tex]p_2 = 2100lb/ft^2[/tex]
Replacing,
[tex]V= \sqrt{\frac{2(2116-2100)}{(0.002377)[(\frac{1}{0.8})^2-1]}}[/tex]
[tex]V = 154.7ft/s[/tex]
Therefore the velocity of the airplane is 154.7ft/s