Calculate the atomic mass of silver if silver has 2 naturally occurring isotopes with the following masses and natural abundances: Ag-107 106.90509 amu 51.84% Ag-109 108.90476 amu 48.46% a 108.19 amu b 107.90 amu c 108.32 amu d 108.00 amu e 107.79 amu

Respuesta :

Answer:

a. 108.19 amu

Explanation:

Isotopes are atoms of the same element, which have the same number of protons and electrons, but a different number of neutrons, and, because of that, different masses.

The atomic mass (M) in the periodic table is a ponderation of the masses of all isotopes found in nature. Thus, it is the summation of the percent multiplied by the mass of each isotope, so:

M = 0.5184*106.90509 + 0.4846*108.90476

M = 108.19 amu

amu = atomic mass unit.

The atomic mass of silver is 108.19 amu.

Isotopes are each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties.

The atomic mass of an element is a weighted average of the masses of its isotopes, considering their natural abundances. We can calculate the atomic mass of silver using the following expression.

[tex]m = \frac{\Sigma m_i \times ab_i }{100}[/tex]

where,

  • mi: mass of the isotope
  • abi: abundance of the isotope

[tex]m = \frac{106.90509 amu \times 51.84 + 108.90476 amu \times 48.46 }{100} = 108.19 amu[/tex]

The atomic mass of silver is 108.19 amu.

You can learn more about isotopes here: https://brainly.com/question/21536220

Ver imagen dsdrajlin
Q&A Education