Name 3 of the 4 features listed below for the function g (x) = log2 (x + 4) - 1 and include a description of how you found those answers using complete sentences. 1) Vertical Asymptote 2) Domain 3) X and Y Intercepts 4) Transformations compared to its parent function f (x) = log2 x

Respuesta :

(1) Vertical asymptote: [tex]x=-4[/tex]

(2) Domain: [tex]x>-4[/tex]

(3) X intercept: [tex](-2,0)[/tex] and Y intercept : [tex](0,1)[/tex]

(4) The function g(x) is shifted 4 units to the left and shifted 1 unit down.

Explanation:

The parent function is [tex]f(x)=\log _{2} x[/tex]

The transformed function is [tex]g(x)=\log _{2}(x+4)-1[/tex]

(1) Vertical asymptote:

The vertical asymptote of a function can be determined by equating

[tex]x+4=0[/tex]

Thus, [tex]x=-4[/tex]

The vertical asymptote is [tex]x=-4[/tex]

(2) Domain:

The domain of a function is the set of all independent x-values.

[tex]x+4>0[/tex]

Thus, [tex]x>-4[/tex]

The domain of a function is [tex]x>-4[/tex]

(3) X and Y intercepts:

To determine the x intercept, let us substitute y=0 in [tex]g(x)=\log _{2}(x+4)-1[/tex]

[tex]\begin{equation}\begin{aligned}\log _{2}(x+4)-1 &=0 \\\log _{2}(x+4) &=1 \\x+4 &=2^{1} \\x &=-2\end{aligned}[/tex]

Thus, the x intercept is [tex](-2,0)[/tex]

To determine the y intercept, let us substitute x=0 in [tex]g(x)=\log _{2}(x+4)-1[/tex]

[tex]\begin{equation}\begin{aligned}y &=\log _{2}(0+4)-1 \\&=\log _{2} 4-1 \\&=2-1 \\&=1\end{aligned}[/tex]

Thus, the y intercept is [tex](0,1)[/tex]

(4) To determine the transformation:

The transformed function [tex]g(x)=\log _{2}(x+4)-1[/tex] is shifted 4 units to the left and shifted 1 unit downwards.

Q&A Education