[tex]2.4088 \times 10^{24} \text { molecules }[/tex] are there in [tex]4.00 \text { moles } C_{3} H_{6} O_{3}[/tex]
Explanation:
One mole = [tex]6.022 \times 10^{23}[/tex] (Applicable to the substances like ions, molecules, or atoms). This specified number is called as Avogadro's constant or number. This idea helps us to convert number of moles of a substance to the number of molecules, multiply moles by Avogadro's number, [tex]6.022 \times 10^{23}[/tex]
Given:
[tex]4.00 \text { moles } C_{3} H_{6} O_{3}[/tex]
To find the number of molecules in it
By using Avogadro’s number, convert given moles into molecules as below,
[tex]\text { 4.00 moles } C_{3} H_{6} O_{3} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \text { mole } C_{3} H_{6} O_{3}}[/tex]
By solving the above, we get
[tex]Number of molecules of $C_{3} H_{6} O_{3}=24.088 \times 10^{23}$[/tex]
[tex]Number\ of\ molecules\ of\ C_{3} H_{6} O_{3}=2.4088 \times 10^{24}\ molecules\ C_{3} H_{6} O_{3}[/tex]