Respuesta :

Question:

Which summation formula represents the series below? 1 + 2 + 6 + 24

(a) [tex]\sum_{n=2}^{5}(n-1) ![/tex]

(b) [tex]\sum_{n=0}^{3} n ![/tex]

(c) [tex]\sum_{n=1}^{4}(n+1) ![/tex]

(d) [tex]\sum_{n=2}^{5} n ![/tex]

Answer:

Option a: [tex]\sum_{n=2}^{5}(n-1) ![/tex] is the correct answer.

Explanation:

Option a: [tex]\sum_{n=2}^{5}(n-1) ![/tex]

By substituting the values of n and expanding the summation, we have,

[tex](2-1) !+(3-1) !+(4-1) !+(5-1) ![/tex]

Subtracting, we have,

[tex]1 !+2!+3 !+4 ![/tex]

Expanding the factorial,

[tex]1+(2*1)+(3*2*1)+(4*3*2*1)[/tex]

Simplifying, we get,

[tex]1+2+6+24[/tex]

Thus, the summation [tex]\sum_{n=2}^{5}(n-1) ![/tex] represents the series [tex]1+2+6+24[/tex]

Hence, Option a is the correct answer.

Option b: [tex]\sum_{n=0}^{3} n ![/tex]

By substituting the values of n and expanding the summation, we have,

[tex]0!+1!+2!+3![/tex]

Expanding the factorial,

[tex]0+1+(2*1)+(3*2*1)[/tex]

Simplifying, we get,

[tex]0+1+2+6[/tex]

Thus, the summation [tex]\sum_{n=0}^{3} n ![/tex] does not represents the series [tex]1+2+6+24[/tex]

Hence, Option b is not the correct answer.

Option c: [tex]\sum_{n=1}^{4}(n+1) ![/tex]

By substituting the values of n and expanding the summation, we have,

[tex](1+1) !+(2+1) !+(3+1) !+(4+1) ![/tex]

Adding, we have,

[tex]2!+3!+4!+5![/tex]

Expanding the factorial,

[tex](2*1)+(3*2*1)+(4*3*2*1)+(5*4*3*2*1)[/tex]

Simplifying, we get,

[tex]2+6+24+120[/tex]

Thus, the summation [tex]\sum_{n=1}^{4}(n+1) ![/tex] does not represents the series [tex]1+2+6+24[/tex]

Hence, Option c is not the correct answer.

Option d: [tex]\sum_{n=2}^{5} n ![/tex]

By substituting the values of n and expanding the summation, we have,

[tex]2!+3!+4!+5![/tex]

Expanding the factorial,

[tex](2*1)+(3*2*1)+(4*3*2*1)+(5*4*3*2*1)[/tex]

Simplifying, we get,

[tex]2+6+24+120[/tex]

Thus, the summation [tex]\sum_{n=2}^{5} n ![/tex] does not represents the series [tex]1+2+6+24[/tex]

Hence, Option d is not the correct answer.

Hence, the correct answer is Option a: [tex]\sum_{n=2}^{5}(n-1) ![/tex]

Idea63

Answer: A

Step-by-step explanation:

Ver imagen Idea63
Q&A Education