The frequency can be defined as the inverse of the period, that is, it can be expressed as
[tex]T = \frac{1}{f}[/tex]
Here,
T = Period
f = Frequency
For each value we only need to replace the value and do the calculation:
PART A)
[tex]T = \frac{1}{f}[/tex]
[tex]T = \frac{1}{60Hz}[/tex]
T = 0.0166s
PART B)
[tex]T = \frac{1}{f}[/tex]
[tex]T = \frac{1}{8*10^6}[/tex]
[tex]T = 1.25*10^{-7} s[/tex]
PART C)
[tex]T = \frac{1}{f}[/tex]
[tex]T = \frac{1}{140*10^{3}}[/tex]
[tex]T = 7.14*10^{-6}s[/tex]
PART D)
[tex]T = \frac{1}{f}[/tex]
[tex]T = \frac{1}{2.4*10^{9}}[/tex]
[tex]T = 4.166*10^{-10}s[/tex]