Car 1 goes around a level curve at a constant speed of 65 km/h . The curve is a circular arc with a radius of 95 m . Car 2 goes around a different level curve at twice the speed of Car 1. How much larger will the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration

Respuesta :

Answer:

The radius of the curve that Car 2 travels on is 380 meters.

Explanation:

Speed of car 1, [tex]v_1=65\ km/h[/tex]

Radius of the circular arc, [tex]r_1=95\ m[/tex]

Car 2 has twice the speed of Car 1, [tex]v_2=130\ km/h[/tex]

We need to find the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration. We know that the centripetal acceleration is given by :

[tex]a=\dfrac{v^2}{r}[/tex]

According to given condition,

[tex]\dfrac{v_1^2}{r_1}=\dfrac{v_2^2}{r_2}[/tex]

[tex]\dfrac{65^2}{95}=\dfrac{130^2}{r_2}[/tex]

On solving we get :

[tex]r_2=380\ m[/tex]

So, the radius of the curve that Car 2 travels on is 380 meters. Hence, this is the required solution.

Q&A Education