A 1200-kg car initially at rest undergoes constant acceleration for 9.4 s, reaching a speed of 11 m/s. It then collides with a stationary car that has a perfectly elastic spring bumper. What is the final kinetic energy of the two car system?

Respuesta :

To solve this problem we will apply the principle of conservation of energy and the definition of kinematic energy as half the product between mass and squared velocity. So,

[tex]KE_i = KE_f[/tex]

[tex]KE_f = \frac{1}{2} mv^2[/tex]

Here,

m = Mass

V = Velocity

Replacing,

[tex]KE_f = \frac{1}{2} (12000)(11)^2[/tex]

[tex]KE_f = 72600J[/tex]

Therefore the  final kinetic energy of the two car system is 72.6kJ

The final kinetic energy of two car system is 72,600 Joules.

To understand more, check below explanation.

Energy conservation:

The energy is neither be created nor be destroyed only transfer from one form to another form.

So that,

      Initial kinetic energy = Final kinetic energy

It is given that, mass,m = 1200kg , speed, v = 11m/s.

As we know that,

        Kinetic energy[tex]=\frac{1}{2}*m*v^{2}[/tex]

Substute above values in above formula.

        [tex]K.E=\frac{1}{2}*1200*(11)^{2} \\\\K.E=600*121=72,600J[/tex]    

Hence, the final kinetic energy of two car system is 72,600 Joules.

Learn more about the kinetic energy here:

https://brainly.com/question/25959744

Q&A Education