Answer:
Therefore,
The Dimensions are,
[tex]Length = 34\ cm\\\\Width = 9\ cm[/tex]
Step-by-step explanation:
Given:
Perimeter of a rectangle,
Perimeter = 86 cm
let "x" be the width of rectangle,
Width = x
then according to the given condition,
length will be given as,
[tex]Length = 3x+7[/tex]
To Find:
Length =?
Width =?
Solution:
Perimeter of rectangle is given by,
[tex]\textrm{Perimeter of Rectangle}=2(Length+Width)[/tex]
Substituting the values we get
[tex]86=2(3x+7+x)\\\\86=2(4x+7).........Equation\\\\86=8x+14\\\\8x=86-14=72\\\\x=\dfrac{72}{8}=9\ cm[/tex]
Substituting "x" in Length we get
[tex]Length = 3\times 9 +7=34[/tex]
Also Area Of Rectangle is given by
[tex]\textrm{Areaof Rectangle}=(Length\times Width)=34\times 9=306\ cm^{2}[/tex]
Therefore,
The Dimensions are,
[tex]Length = 34\ cm\\\\Width = 9\ cm[/tex]