A consumer products company found that 44​% of successful products also received favorable results from test market​ research, whereas 13​% had unfavorable results but nevertheless were successful. That​ is, P(successful product and favorable test ​market) = 0.44 and​ P(successful product and unfavorable test ​market) = 0.13. They also found that 32​% of unsuccessful products had unfavorable research​ results, whereas 11​% of them had favorable research​ results, that is​ P(unsuccessful product and unfavorable test ​market) = 0.32 and​ P(unsuccessful product and favorable test ​market) = 0.11.
Find the probabilities of successful and unsuccessful products given known test market​ results, that​ is, P(successful product given favorable test​ market), P(successful product given unfavorable test​ market), P(unsuccessful product given favorable test​ market), and​ P(unsuccessful product given unfavorable test​ market).

Respuesta :

Answer:

  1. 0.80
  2. 0.289
  3. 0.20
  4. 0.711

Step-by-step explanation:

Given:

[tex]P(S\cap F)=0.44\\P(S\cap F^{c})=0.13\\P(S^{c}\cap F^{c}) = 0.32\\P(S^{c}\cap F) = 0.11[/tex]

The rule of total probability states that:

[tex]P(A) = P(A\cap B) + P(A\cap B^{c})[/tex]

Compute the individual probabilities as follows:

[tex]P(S) = P(S\cap F) + P(S\cap F^{c})\\=0.44+0.13\\0.57[/tex]

[tex]P(S^{c}) = 1 - P(S)\\=1-0.57\\=0.43[/tex]

[tex]P(F) = P(S\cap F) + P(S^{c}\cap F)\\=0.44+0.11\\=0.55[/tex]

[tex]P(F^{c})=1-P(F)\\=1-0.55\\=0.45[/tex]

Conditional probability of an event A given B is:

[tex]P(A|B)=\frac{P(A\cap B)}{P(B)}[/tex]

  • Compute the value of [tex]P(S|F)[/tex]:

         [tex]P(S|F)=\frac{P(S\cap F)}{P(F)}\\=\frac{0.44}{0.55}\\=0.80[/tex]

  • Compute the value of [tex]P(S|F^{c})[/tex]

        [tex]P(S|F^{c})=\frac{P(S\cap F^{c})}{P(F^{c})}\\=\frac{0.13}{0.45}\\=0.289[/tex]

  • Compute the value of [tex]P(S^{c}|F)[/tex]

        [tex]P(S^{c}|F)=\frac{P(S^{c}\cap F)}{P(F}\\=\frac{0.11}{0.55}\\=0.20[/tex]

  • Compute the value of[tex]P(S^{c}|F^{c})[/tex]

       [tex]P(S^{c}|F^{c})=\frac{P(S^{c}\cap F^{c})}{P(F^{c})}\\=\frac{0.32}{0.45}\\=0.711[/tex]

Q&A Education