The ball will oscillate along the z axis between z=dz=d and z=−dz=−d in simple harmonic motion. What will be the angular frequency ωωomega of these oscillations? Use the approximation d≪ad≪a to simplify your calculation; that is, assume that d2+a2≈a2d2+a2≈a2. Express your answer in terms of given charges, dimensions, and constants.

Respuesta :

Answer:

[tex]\omega = \sqrt{\dfrac{kq_0Q}{ma^3} }[/tex]

Explanation:

Additional information:

The ball has charge [tex]-q_0[/tex], and the ring has  positive charge [tex]+Q[/tex] distributed uniformly along its circumference.

The electric field at distance [tex]z[/tex] along the z-axis due to the charged ring is

[tex]E_z= \dfrac{kQz}{(z^2+a^2)^{3/2}}.[/tex]

Therefore, the force on the ball with charge [tex]-q_0[/tex] is

[tex]F=-q_oE_z[/tex]

[tex]F=- \dfrac{kq_0Qz}{(z^2+a^2)^{3/2}}[/tex]

and according to Newton's second law

[tex]F=ma=m\dfrac{d^2z}{dz^2}[/tex]

substituting [tex]F[/tex] we get:

[tex]- \dfrac{kq_0Qz}{(z^2+a^2)^{3/2}}=m\dfrac{d^2z}{dz^2}[/tex]

rearranging we get:

[tex]m\dfrac{d^2z}{dz^2}+ \dfrac{kq_0Qz}{(z^2+a^2)^{3/2}}=0[/tex]

Now we use the approximation that

[tex]z^2+a^2\approx a^2[/tex] (we use this approximation instead of the original [tex]d^2+a^2\approx a^2[/tex] since [tex]z<d[/tex], our assumption still holds )

and get

[tex]m\dfrac{d^2z}{dz^2}+ \dfrac{kq_0Qz}{(a^2)^{3/2}}=0[/tex]

[tex]m\dfrac{d^2z}{dz^2}+ \dfrac{kq_0Qz}{a^{3}}=0[/tex]

Now the last equation looks like a Simple Harmonic Equation

[tex]m\dfrac{d^2z}{dz^2}+kz=0[/tex]

where

[tex]\omega=\sqrt{ \dfrac{k}{m} }[/tex]

is the frequency of oscillation. Applying this to our equation we get:

[tex]m\dfrac{d^2z}{dz^2}+ \dfrac{kq_0Q}{a^{3}}z=0\\\\m=m\\\\k= \dfrac{kq_0Q}{a^{3}}[/tex]

[tex]\boxed{\omega = \sqrt{\dfrac{kq_0Q}{ma^3} }}[/tex]

Ver imagen Poltergeist
Q&A Education