A simple pendulum has a period of 3.45 second, when the length of the pendulum is shortened by 1.0m, the period is 2.81 second calculate, the original length of the pendulum, the value of accelerations due to gravity​

Respuesta :

Answer:

Original length = 2.97 m

Explanation:

Let the original length of the pendulum be 'L' m

Given:

Acceleration due to gravity (g) = 9.8 m/s²

Original time period of the pendulum (T) = 3.45 s

Now, the length is shortened by 1.0 m. So, the new length is 1 m less than the original length.

New length of the pendulum is, [tex]L_1=L-1[/tex]

New time period of the pendulum is, [tex]T_1=2.81\ s[/tex]

We know that, the time period of a simple pendulum of length 'L' is given as:

[tex]T=2\pi\sqrt{\frac{L}{g}}[/tex]-------------- (1)

So, for the new length, the time period is given as:

[tex]T_1=2\pi\sqrt{\frac{L_1}{g}}[/tex]------------ (2)

Squaring both the equations and then dividing them, we get:

[tex]\dfrac{T^2}{T_1^2}=\dfrac{(2\pi)^2\frac{L}{g}}{(2\pi)^2\frac{L_1}{g}}\\\\\\\dfrac{T^2}{T_1^2}=\dfrac{L}{L_1}\\\\\\L=\dfrac{T^2}{T_1^2}\times L_1[/tex]

Now, plug in the given values and calculate 'L'. This gives,

[tex]L=\frac{3.45^2}{2.81^2}\times (L-1)\\\\L=1.507L-1.507\\\\L-1.507L=-1.507\\\\-0.507L=-1.507\\\\L=\frac{-1.507}{-0.507}=2.97\ m[/tex]

Therefore, the original length of the simple pendulum is 2.97 m

Otras preguntas

Q&A Education