A spaceship moves radially away from Earth with acceleration 29.4 m/s 2 (about 3g). How much time does it take for sodium streetlamps (λ = 589 nm) on Earth to be invisible to the astronauts who look with a powerful telescope upon the city streets of Earth?

Respuesta :

Answer:

doppler shift's formula for source and receiver moving away from each other:

λ'=λ°√(1+β/1-β)

Explanation:

acceleration of spaceship=α=29.4m/s²

wavelength of sodium lamp=λ°=589nm

as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm

using doppler shift's formula:

λ'=λ°√(1+β/1-β)

putting the values:

700nm=589nm√(1+β/1-β)

after simplifying:

β=0.17

by this we can say that speed at that time is: v=0.17c

to calculate velocity at an acceleration of a=29.4m/s²

we suppose that spaceship started from rest so,

v=v₀+at

where v₀=0

so v=at

as we want to calculate t so:-

t=v/a                                                v=0.17c      ,c=3x10⁸           ,a=29.4m/s²

putting values:

=0.17(3x10⁸m/s)/29.4m/s²

t=1.73x10⁶

Q&A Education