Wave 1 displaces according the function f(θ)= 2sin θ+1. Wave 2 displaces according to the function f(θ)= 3sin θ+.5. At what angle, in degrees, will the two waves have the same displacement?

Respuesta :

Answer:

θ = 30⁰  

Explanation:

We have been given two wave displacement equations,

[tex]y_{1} =2sin\theta +1[/tex]     ........(1)

[tex]y_{2}=3sin\theta +0.5[/tex]     ........(2)

The waves will have same displacements when [tex]y_{1}=y_{2}=y[/tex] (say)

Therefore, operating (2) - (1), we get,

[tex]sin\theta - 0.5=0[/tex]

or, [tex]\theta = sin^{-1}(0.5)=30^{o}[/tex] (since, sin 30⁰ = 0.5)

We can check the answer by putting [tex]\theta=30^{o}[/tex] in equations (1) and (2),

[tex]y_{1}=2sin30^{o}+1=2\times0.5 + 1= 2[/tex]

[tex]y_{2}=3sin30^{o}+0.5=3\times0.5+0.5=1.5+0.5=2[/tex]

Answer:

θ= 30°

Explanation:

Set the wave functions equal to another, as displacements would be the same. Therefore, 2sin θ+1 = 3sin θ+.5.

sin θ=.5

θ= 30°

Q&A Education