Respuesta :
Answer:
Part a: The Future value of the annuity after 40 years is $518113.24.
Part b: The per year withdrawal in retirement for 25 years will be $48536.19.
Step-by-step explanation:
As the numbers are appearing as a duplication taking all these values as single.
Part a
Future value is given as
[tex]FV=PMT \times [\frac{{(1+I)}^{N}-1}{I}][/tex]
Here
- PMT is the annual value which is $2000 per year
- I is the interest rate which is given as 8%
- N is 40
[tex]FV=PMT \times [\frac{{(1+I)}^{N}-1}{I}]\\\\FV=2000 \times [\frac{({1+.08})^{40}-1}{.08}]\\FV=\$ 518113.03[/tex]
So the Future value of the annuity after 40 years is $518113.24.
Part b
Per year withdrawal is given as
[tex]PY=\frac{Value}{\frac{1 - \frac{1}{(1+I)^N}}{I}}[/tex]
Here
- PY is the per year withdrawal
- Value is the total amount which is $ 518113 as calculated in part a
- I is the rate of interest which is 8%
- N is 25 years as expected life to live in retirement.
So the value is given as
[tex]PY=\frac{Value}{\frac{1 - \frac{1}{(1+I)^N}}{I}}\\PY=\frac{518113}{\frac{1 - \frac{1}{(1+0.08)^{25}}}{0.08}}\\PY=\frac{518113}{10.6747}\\PY=\$ 48536.19[/tex]
So the per year withdrawal in retirement for 25 years will be $48536.