3 lines are shown. A line with points M, H, K intersects with a line with points J, H, L at point H. Another line extends from point H to point N in between angle K, H, J. Angle M H L is (3 x + 20) degrees, angle K H N is (x + 25) degrees, and angle J H N is (x + 20) degrees. What is the measure of AngleJHN? 25° 45° 50° 95°

Respuesta :

Answer:

Option B.

Step-by-step explanation:

Given information: ∠MHL=(3x+20), ∠KHN=(x+25), and ∠JHN=(x+20).

We need to find the measure of ∠JHN.

[tex]\angle MHL=\angle JHK[/tex]                         (Vertical opposite angles)

[tex]\angle MHL=\angle JHN+\angle KHN[/tex]

Substitute the given values.

[tex]3x+20=(x+20)+(x+25)[/tex]

[tex]3x+20=2x+45[/tex]

[tex]3x-2x=45-20[/tex]

[tex]x=25[/tex]

The value of x is 25. So, the measure of ∠JHN is

[tex]\angle JHN=x+20=25+20=45[/tex]

The measure of ∠JHN is 45°.

Therefore, the correct option is B.

Ver imagen erinna

Answer:

it's B

Step-by-step explanation:

Q&A Education