Answer:
(4,5)
Step-by-step explanation:
We are to find the circumcenter of triangle EFG with vertices
E(2,6), F(2,4), and G(6,4)
Let S(x,y) be the circum center. Then this point is equidistance from E, F and
G
i.e. [tex]ES=FS=GS\\ES^2 =FS^2 =GS^2[/tex]
[tex](x-2)^2+(y-6)^2 =(x-2)^2+(y-4)^2 =(x-6)^2+(y-4)^2 \\i.e. x^2-4x+4+y^2-12y+36 = x^2-4x+4+y^2-8y+16 = x^2-12x+36+y^2-8y+16 \\4y = 20: y =5\\8x=32\\x=4[/tex]
Thus circumcenter is (4,5)