Answer:
Step-by-step explanation:
concentration = amount of salt/solution
A) Initial concentration= 90/1000 = 0.09
Q = quantity of salt
Q(0) = 90 kg
Inflow rate = 8 l/min
Outflow rate = 8 l/min
Solution = 1000 L at any time t.
Salt inflow = 0.045 * 8 per minute
= 0.36 kg per minute
This is mixed and drains from the tank.
Outflow = [tex]\frac{Q(t)}{1000}[/tex]
Thus rate of change of salt
Q'(t) = inflow - outflow = [tex]0.36-\frac{Q(t)}{1000} \\=\frac{360-Q(t)}{1000}[/tex]
Separate the variables and integrate
[tex]\frac{1000dQ}{360-q(t)} =dt\\-1000 ln |360-Q(t)| = t+C\\ln |360-Q(t)| = -0.001+C'\\360-Q(t) = Ae^{-0.001t} \\Q(t) = 360-Ae^{-0.001t}[/tex]
Use the fact that Q(0) = 90
90 = 360-A
A = 270
So
[tex]Q(t) = 360-270e^{-0.001t}[/tex]
B) Q(t) = 360-270e^-0.004 = 91.07784
C) When t approaches infinity, we get
Q(t) tends to 360
So concentration =360/1000 = 0.36