Respuesta :

Answer:

OPTION C: [tex]$ \textbf{37} \frac{\textbf{28}}{\textbf{8}} $[/tex] pounds.

Step-by-step explanation:

From the figure we can see that there are three dots against [tex]$ 3 \frac{7}{8} $[/tex].

That means it becomes [tex]$ 3 \times 3\frac{7}{8} $[/tex].

Note that if there is a mixed fraction of the form [tex]$ a \frac{b}{c} $[/tex]   =   [tex]$ a + \frac{b}{c} $[/tex].

Therefore, [tex]$ 3 \times 3\frac{7}{8} = 3 \times \bigg(3 + \frac{7}{8} \bigg ) $[/tex]                ... (1)

Similarly, against 4 there are 2 dots.

So, it should be [tex]$ 4 \times 2 $[/tex] pounds.                   ...(2)

3 dots against [tex]$ 4 \frac{1}{8} $[/tex].

So, it becomes [tex]$ 3 \times \bigg(4 + \frac{1}{8} \bigg) $[/tex]                       ...(3)

Similarly, 2 dots against [tex]$ 4 + \frac{2}{8} $[/tex].

This will become [tex]$ 2 \times \bigg( 2 + \frac{2}{8} \bigg) $[/tex]                  ...(4)

Now, to calculate the total pound, we simply add (1), (2), (3) & (4).

⇒    [tex]$ 3 \times \bigg(3 + \frac{7}{8} \bigg ) $[/tex]     [tex]$ + $[/tex]      [tex]$ 4 \times 2 $[/tex]       +     [tex]$ 3 \times \bigg(4 + \frac{1}{8} \bigg) $[/tex]       [tex]$ + $[/tex]        [tex]$ 2 \times \bigg( 2 + \frac{2}{8} \bigg) $[/tex]

⇒    [tex]$ 9 + \frac{21}{8} + 8 + 12 + \frac{3}{8} + 8 + \frac{4}{8} $[/tex]

⇒    [tex]$ \bigg ( 9 + 8 + 12 + 8 \bigg) + \bigg( \frac{21 + 3 + 4}{8} \bigg ) $[/tex]

⇒ [tex]$ \textbf{37} \textbf {+} \frac{\textbf{28}}{\textbf{8}} $[/tex]  [tex]$ \textbf{=} \hspace{1mm} \textbf{37} \frac{\textbf{28}}{\textbf{8}} $[/tex] which is the required answer.

Q&A Education