How many pounds of oranges do the data in the plot line represent?
Answer:
OPTION C: [tex]$ \textbf{37} \frac{\textbf{28}}{\textbf{8}} $[/tex] pounds.
Step-by-step explanation:
From the figure we can see that there are three dots against [tex]$ 3 \frac{7}{8} $[/tex].
That means it becomes [tex]$ 3 \times 3\frac{7}{8} $[/tex].
Note that if there is a mixed fraction of the form [tex]$ a \frac{b}{c} $[/tex] = [tex]$ a + \frac{b}{c} $[/tex].
Therefore, [tex]$ 3 \times 3\frac{7}{8} = 3 \times \bigg(3 + \frac{7}{8} \bigg ) $[/tex] ... (1)
Similarly, against 4 there are 2 dots.
So, it should be [tex]$ 4 \times 2 $[/tex] pounds. ...(2)
3 dots against [tex]$ 4 \frac{1}{8} $[/tex].
So, it becomes [tex]$ 3 \times \bigg(4 + \frac{1}{8} \bigg) $[/tex] ...(3)
Similarly, 2 dots against [tex]$ 4 + \frac{2}{8} $[/tex].
This will become [tex]$ 2 \times \bigg( 2 + \frac{2}{8} \bigg) $[/tex] ...(4)
Now, to calculate the total pound, we simply add (1), (2), (3) & (4).
⇒ [tex]$ 3 \times \bigg(3 + \frac{7}{8} \bigg ) $[/tex] [tex]$ + $[/tex] [tex]$ 4 \times 2 $[/tex] + [tex]$ 3 \times \bigg(4 + \frac{1}{8} \bigg) $[/tex] [tex]$ + $[/tex] [tex]$ 2 \times \bigg( 2 + \frac{2}{8} \bigg) $[/tex]
⇒ [tex]$ 9 + \frac{21}{8} + 8 + 12 + \frac{3}{8} + 8 + \frac{4}{8} $[/tex]
⇒ [tex]$ \bigg ( 9 + 8 + 12 + 8 \bigg) + \bigg( \frac{21 + 3 + 4}{8} \bigg ) $[/tex]
⇒ [tex]$ \textbf{37} \textbf {+} \frac{\textbf{28}}{\textbf{8}} $[/tex] [tex]$ \textbf{=} \hspace{1mm} \textbf{37} \frac{\textbf{28}}{\textbf{8}} $[/tex] which is the required answer.