Answer:
The angle is 2.33°.
Explanation:
Given that,
Speed of ball = 12 m/s
Acceleration = 0.4 m/s²
We need to calculate the time
Using formula of time of flight
[tex]t=\dfrac{2u}{g}[/tex]
[tex]t=\dfrac{2v\cos\theta}{g}[/tex]
Put the value into the formula
[tex]t=\dfrac{2\times12\cos\theta}{9.8}[/tex]
[tex]t=2.44\cos\theta[/tex]
We need to calculate the angle
Using equation of motion along vertical direction
[tex]s=ut-\dfrac{1}{2}at^2[/tex]
[tex]s=v\sin\theta\times t-\dfrac{1}{2}at^2[/tex]
Put the value in the equation
[tex]0=12\sin\theta\times2.44\cos\theta-\dfrac{1}{2}\times0.4\times(2.44\cos\theta)^2[/tex]
[tex]2\times12\sin\theta\times2.44=0.4\times(2.44)^2\cos\theta[/tex]
[tex]\tan\theta=\dfrac{0.4\times2.44}{2\times12}[/tex]
[tex]\theta=\tan^{-1}(0.04066)[/tex]
[tex]\theta=2.33^{\circ}[/tex]
Hence, The angle is 2.33°.