Respuesta :

Space

Answer:

[tex]\displaystyle A = \frac{12}{5}[/tex]

General Formulas and Concepts:

Math

  • Number Line

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Terms/Coefficients
  • Factoring
  • Coordinates (x, y)
  • Solving systems of equations using substitution/elimination
  • Solving systems of equations by graphing
  • Function Notation
  • Interval Notation

Calculus

Integration

Integration Property [Addition/Subtraction]:                                                       [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Splitting Integral]:                                                               [tex]\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx[/tex]

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                     [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Area of a Region Formula:                                                                                     [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

  • f(x) is always top function
  • g(x) is always bottom function
  • "Top minus Bottom"

Step-by-step explanation:

Step 1: Define

Identify bounded region. See attached graph.

y = 3x - 6

y = -2x + 8

Bounded by x-axis and between those 2 lines (already pre-determined; taking an integral always takes it to the x-axis).

Step 2: Analyze Graph

See attached graph.

Looking at our systems of equations on the graph, we see that our limits of integration is from x = 2 to x = 4.

We don't have a continuous top function through the interval [2, 4] (it switches from y = 3x - 6 to y = -2x + 8), so we need to split it into 2 integrals to find the total area.

We can either use the graph and identify the intersection point, which is x = 2.8, or we can solve it algebraically (systems of equations - substitution method):

  1. Substitute in y:                                                                                                3x - 6 = -2x + 8
  2. [Addition Property of Equality] Add 2x on both sides:                                5x - 6 = 8
  3. [Addition Property of Equality] Add 6 on both sides:                                  5x = 14
  4. [Division Property of Equality] Divide 5 on both sides:                                x = 14/5

Our 2 intervals would be [2, 14/5] and [14/5, 4] for their respective integrals.

Step 3: Find Area

Our top functions are the linear lines y = 3x - 6 and y = -2x + 8 and our continuous bottom function is the x-axis (x = 0).

We can redefine the linear lines as f₁(x) = 3x - 6, f₂(x) = -2x + 8, and g(x) = 0.

Integration

  1. [Area of a Region Formula] Rewrite/Redefine [Int Prop SI]:                       [tex]\displaystyle A = \int\limits^b_a {[f_1(x) - g(x)]} \, dx + \int\limits^c_b {[f_2(x) - g(x)]} \, dx[/tex]
  2. [Area of a Region Formula] Substitute in variables:                                   [tex]\displaystyle A = \int\limits^{\frac{14}{5}}_2 {[(3x - 6) - 0]} \, dx + \int\limits^4_{\frac{14}{5}} {[(-2x + 8) - 0]} \, dx[/tex]
  3. [Integrals] Simplify Integrands:                                                                    [tex]\displaystyle A = \int\limits^{\frac{14}{5}}_2 {[3x - 6]} \, dx + \int\limits^4_{\frac{14}{5}} {[-2x + 8]} \, dx[/tex]
  4. [Integrals - Algebra] Factor:                                                                        [tex]\displaystyle A = \int\limits^{\frac{14}{5}}_2 {[3(x - 2)]} \, dx + \int\limits^4_{\frac{14}{5}} {[-2(x - 4)]} \, dx[/tex]
  5. [Integrals] Simplify [Int Prop MC]:                                                                [tex]\displaystyle A = 3 \int\limits^{\frac{14}{5}}_2 {[x - 2]} \, dx - 2 \int\limits^4_{\frac{14}{5}} {[x - 4]} \, dx[/tex]
  6. [Integrals] Integrate [Int Rule RPR]:                                                               [tex]\displaystyle A = 3(\frac{x^2}{2} - 2x) \bigg| \limits^{\frac{14}{5}}_2 - 2(\frac{x^2}{2} - 4x) \bigg| \limits^4_{\frac{14}{5}}[/tex]
  7. [Integrals] Evaluate [Int Rule FTC 1]:                                                            [tex]\displaystyle A = 3(\frac{8}{25}) - 2(\frac{-18}{25})[/tex]
  8. [Expression] Multiply:                                                                                    [tex]\displaystyle A = \frac{24}{25} + \frac{36}{25}[/tex]
  9. [Expression] Add:                                                                                           [tex]\displaystyle A = \frac{12}{5}[/tex]

We have found the area bounded by the x-axis and linear lines y = 3x - 6 and y = -2x + 8.

Topic: Calculus BC

Unit: Area between 2 Curves, Volume, Arc Length, Surface Area

Chapter 7 (College Textbook - Calculus 10e)

Hope this helped!

Ver imagen Space

Answer:

A = 12/5 units

Step-by-step explanation:

USING ALGEBRA:

We can find the intersection point between these two lines;

  • y = 3x - 6
  • y = -2x + 8

Set these two equations equal to each other.

  • 3x - 6 = -2x + 8

Add 2x to both sides of the equation.

  • 5x - 6 = 8

Add 6 to both sides of the equation.

  • 5x = 14

Divide both sides of the equation by 5.

  • x = 14/5  

Find the y-value where these points intersect by plugging this x-value back into either equation.

  • y = 3(14/5) - 6

Multiply and simplify.

  • y = 42/5 - 6

Multiply 6 by (5/5) to get common denominators.

  • y = 42/5 - 30/5  

Subtract and simplify.

  • y = 12/5

These two lines intersect at the point 12/5. This is the height of the triangle formed by these two lines and the x-axis.

Now let's find the roots of these equations (where they touch the x-axis) so we can determine the base of the triangle.

Set both equations equal to 0.

  • (I) 0 = 3x - 6  

Add 6 both sides of the equation.

  • 6 = 3x

Divide both sides of the equation by 3.

  • x = 2  

Set the second equation equal to 0.

  • (II) 0 = -2x + 8

Add 2x to both sides of the equation.

  • 2x = 8

Divide both sides of the equation by 2.

  • x = 4

The base of the triangle is from (2,0) to (4,0), making it a length of 2 units.

The height of the triangle is 12/5 units.

Formula for the Area of a Triangle:

  • A = 1/2bh

Substitute 2 for b and 14/5 for h.

  • A = (1/2) · (2) · (12/5)

Multiply and simplify.

  • A = 12/5

The area of the region bounded by the lines y = 3x - 6 and y = -2x + 8 between the x-axis is 12/5 units.

Ver imagen Supernova
Q&A Education