Consider the second-order reaction: 2HI(g)→H2(g)+I2(g). Use the simulation to find the initial concentration [HI]0and the rate constant k for the reaction. What will be the concentration of HI after t = 1.01×10^10 s ([HI]t) for a reaction starting under the condition in the simulation?

Respuesta :

Explanation:

The given reaction equation is as follows.

       [tex]2HI(g) \rightarrow H_{2}(g) + I_{2}(g)[/tex]

       [tex]\frac{-d[HI]}{dt} = k[HI]^{2}[/tex]

 [tex]-\int_{[HI]_{o}}^{[HI]_{t}} \frac{d[HI]}{[HI]^{2}} = k \int_{o}^{t} dt[/tex]

    [tex]-[\frac{-1}{[HI]}]^{[HI]_{t}}_{[HI]_{o}} = kt[/tex]

        [tex]\frac{1}{[HI]_{t}} - \frac{1}{[HI]_{o}} = kt[/tex] .......... (1)

where,   [tex][HI_{o}][/tex] = Initial concentration

             [tex][HI]_{t}[/tex] = concentration at time t

                  k = rate constant

                  t = time

Now, we will calculate the initial concentration of HI as follows.

            Initial rate = [tex]1.6 \times 10^{-7} mol/sec[/tex]

                k = [tex]6.4 \times 10^{-9}[/tex]

           R = [tex]k[HI]^{2}_{o}[/tex]

    [tex][HI]^{2}_{o} = \frac{R}{k}[/tex]

                = [tex]\frac{1.6 \times 10^{-7}}{6.4 \times 10^{-9}}[/tex]

      [tex][HI]_{o}[/tex] = 5 M

Now, we will calculate the concentration of [tex][HI]_{t}[/tex] at t = [tex]1.01 \times 10^{10}[/tex] sec as follows.

Using equation (1) as follows.

           k = [tex]6.4 \times 10^{-9}[/tex]

         [tex]\frac{1}{[HI]_{t}} - \frac{1}{5}[/tex] = [tex](6.4 \times 10^{-9}) \times 1.01 \times 10^{10}[/tex]

           [tex]\frac{1}{[HI]_{t}}[/tex] = 64.44

              [tex][HI]_{t}[/tex] = 0.0155 M

Thus, we can conclude that concentration of HI at t = [tex]1.01 \times 10^{10}[/tex] sec is 0.0155 M.

         

A reception subservient on the second and first-order reactants is called a second-order reaction.

The correct answer is:

The concentration of HI at t = 1.01 × 10¹⁰ sec is 0.0155 M.

The equation according to the question is:

2 HI (g) ⇒ H₂ (g) + I₂ (g)

[tex]\dfrac{\text{-d}\left[\begin{array}{ccc}\text{HI}\end{array}\right] }{\text{dt}} & = \text{k} \left[\begin{array}{ccc}\text{HI}\end{array}\right] ^{2}[/tex]

[tex]\dfrac{1}{\left[\begin{array}{ccc}\text{HI}\end{array}\right] _{\text{t}} } - \dfrac{1}{\left[\begin{array}{ccc}\text{HI}\end{array}\right] _{\text{o}} } &= \text{kt}[/tex] .......equation (1)

Where, the initial concentration can be represented as: [tex]\left[\begin{array}{ccc}\text{HI}_{o} \end{array}\right][/tex]

The concentration at time t = [tex]\left[\begin{array}{ccc}\text{HI}\end{array}\right] \text{t}[/tex]

Rate constant will be = k

The time will be = t

The initial concentration of HI can be calculated as:

The initial rate = 1.6 × 10⁻⁷ mol/sec

k = 6.4 × 10⁻⁹

[tex]\text{R} & = \text{k} \left[\begin{array}{ccc}\text{HI}\end{array}\right] ^{2} _{0}[/tex]

[tex]\dfrac{\text{R}}{\text{k}} & =\left[\begin{array}{ccc}\text{HI}\end{array}\right] ^{2} _{0}[/tex]

= [tex]\dfrac{1.6 \times 10^{-7} }{6.4 \times 10^{-9} }[/tex]

[tex]\left[\begin{array}{ccc}\text{HI}\end{array}\right]\end{array}\right] _{0} &= 5 \;\text{M}[/tex]

To calculate the concentration  [tex]\left[\begin{array}{ccc}\text{HI}\end{array}\right] \text{t}[/tex] at time (t) = 1.01 × 10 ¹⁰ sec.

Now, using the above equation: (1)

k = 6.4 × 10⁻⁹

[tex]\dfrac{1}{\left[\begin{array}{ccc}\text{HI}\end{array}\right] \text{t}} - \dfrac{1}{5}[/tex]        

= (6.4 × 10⁻⁹) × 1.01 × 10¹⁰

[tex]\dfrac{1}{\left[\begin{array}{ccc}\text{HI}\end{array}\right] \text{t}} = 64.44[/tex]

[tex]{\left[\begin{array}{ccc}\text{HI}\end{array}\right] \text{t}} = 0.0155 \;\text{M}[/tex]

Therefore, concentration of HI at t =  1.01 × 10¹⁰ sec is 0.0155 M.

To learn more about second-order reaction refer to the link:

https://brainly.com/question/12446045

Q&A Education