Respuesta :

Answer:

The density is 10.25 [tex]\frac{atom}{nm^{2} }[/tex]

Explanation:

From the question we are given that the lattice spacing  nm

        V = [tex](0.546)^{3} }[/tex] × [tex]nm^{3}[/tex]

            = 0.1628 [tex]nm^{3}[/tex]

           zinc blende lattice has 4 atom per unit cell.

           This means that 4  atoms is contained in 0.15056 [tex]nm^{3}[/tex]

            Density of the cubic unit in terms of atom  is given as =

                                                                                                      =26.565 [tex]\frac{atoms}{nm^{3} }[/tex]

            For plane  (110) the spacing between the cubic unit in the crystal denoted by  [tex]d_{hkl}[/tex] is given as =  [tex]\frac{a}{\sqrt{1^{2} + 1^{2} +0^{2} } }[/tex] Where a is the lattic spacing = 0.546

                                               =   [tex]\frac{0.546}{\sqrt{2} }[/tex]  = 0.376 nm

               The density of the lattice in (110) plane  =26.565 [tex]\frac{atoms}{nm^{3} }[/tex] × 0.386 nm

                                                                                 = 10.25 [tex]nm^{2}[/tex]

Q&A Education