Respuesta :

Question:

Given tan B =7/24, find the sin B

Answer:

Option A

[tex]sin\ B = \frac{7}{25}[/tex]

Solution:

Given that,

[tex]tan\ B = \frac{7}{24}[/tex]

We have to find sin B

We know that by trignometric ratios,

[tex]tan = \frac{opposite}{adjacent}[/tex]

From given,

[tex]tan\ B = \frac{7}{24}[/tex]

On comparing we get,

Opposite = 7

Adjacent = 24

We can find the hypotenuse

[tex]hypotenuse^2 = opposite^2 + adjacent^2\\\\hypotenuse^2 = 7^2 + 24^2\\\\hypotenuse^2 = 49 + 576\\\\hypotenuse^2 = 625\\\\Take\ square\ root\ on\ both\ sides\\\\hypotenuse = 25[/tex]

Thus Sin B is given as:

[tex]sin\ B = \frac{opposite}{hypotenuse}\\\\sin\ B = \frac{7}{25}[/tex]

Thus, sin B is [tex]\frac{7}{25}[/tex]