Respuesta :

Answer:

Part 1) [tex]A=126.87^o[/tex]

Part 2) [tex]tan(A)=-\frac{4}{3}[/tex]

Step-by-step explanation:

we have

[tex]cos(A)=-0.6[/tex]

The cos(A) is negative, that means that the angle A in the triangle ABC is an obtuse angle and the value of the sin(A) is positive

The angle A lie on the II Quadrant

step 1

Find the measure of angle A

[tex]cos(A)=-0.6[/tex]

using a calculator

[tex]A=cos^{-1}(-0.6)=126.87^o[/tex]

step 2

Find the sin(A)

we know that

[tex]sin^2(A)+cos^2(A)=1[/tex]

substitute the value of cos(A)

[tex]sin^2(A)+(-0.6)^2=1[/tex]

[tex]sin^2(A)=1-0.36[/tex]

[tex]sin^2(A)=0.64[/tex]

[tex]sin(A)=0.8[/tex]

step 3

Find tan(A)

we know that

[tex]tan(A)=\frac{sin(A)}{cos(A)}[/tex]

substitute the values

[tex]tan(A)=\frac{0.8}{-0.6}[/tex]

Simplify

[tex]tan(A)=-\frac{4}{3}[/tex]

Otras preguntas

Q&A Education