m m< B = 80 + x
m< C=110 - 3x
m Quadrilateral ABCD is a parallelogram if both pairs of opposite angles are equal. Prove that Quadrilateral ABCD is
a parallelogram by finding the value of x.

Respuesta :

Answer:

[tex]x=5[/tex]

Step-by-step explanation:

The complete question is

m ∠ A = 100 - x

m ∠ B = 80 + x

m ∠ C = 110 - 3x

m ∠ D = 75 + 2x

Quadrilateral ABCD is a parallelogram if both pairs of opposite angles are equal. Prove that Quadrilateral ABCD is a parallelogram by finding the value of x.

Options

A) x = 5

B) x = 7

C) x = 10

D) x = 15/2

we know that

In a parallelogram, opposite angles are parallel and consecutive angles are supplementary

so

m ∠ A=m ∠ C

m ∠ B=m ∠ D

m ∠ A+m ∠ B=180°

m ∠ B+m ∠ C=180°

step 1

Find the value of x

we know that

m ∠ A=m ∠ C

substitute the given values

[tex](100-x)^o=(110-3x)^o[/tex]

solve for x

Group terms

[tex]3x-x=110-100[/tex]

Combine like terms

[tex]2x=10[/tex]

[tex]x=5[/tex]

step 2

Verify the measure of the angles

[tex]m\angle A=100-5=95^o[/tex]

[tex]m\angle B=80+5=85^o[/tex]

[tex]m\angle C=110-3(5)=95^o[/tex]

[tex]m\angle D=75+2(5)=85^o[/tex]

therefore

[tex]m\angle A=m\angle C[/tex] ---> is ok

[tex]m\angle B=m\angle D[/tex] ---> is ok

[tex]m\angle A+m\angle B=180^o[/tex] ---> is ok

[tex]m\angle B+m\angle C=180^o[/tex] ---> is ok

Q&A Education