Respuesta :

Answer:

  E.  1/2

Step-by-step explanation:

Divide by 2, then make use of the Pythagorean identity for sine and cosine.

  sin(x)^2 +cos(x)^2 = 2a

  1 = 2a . . . . . . . sin²+cos²=1

  1/2 = a

Answer:

Option E) is correct.

[tex]a=\frac{1}{2}[/tex]

Step-by-step explanation:

Given trignometric equation is [tex]2sin^{2}x + 2cos^{2}x = 4a[/tex]

To find the value of "a" from the given equation:

[tex]2sin^{2}x + 2cos^{2}x = 4a[/tex]

Taking common number "2" outside the equation of left hand side

[tex]2(sin^{2}x +cos^{2}x) = 4a[/tex]

[tex]sin^{2}x +cos^{2}x =\frac{4a}{2}[/tex]

[tex]sin^{2}x+cos^{2}x =2a[/tex]

( We know the trignometric formula  [tex]sin^{2}\theta +cos^{2}\theta=1[/tex] here

[tex]\theta=x[/tex]  )

Therefore  [tex](1) =2a[/tex]

[tex]\frac{1}{2} =a[/tex]

It can be written as

[tex]a=\frac{1}{2}[/tex]

Therefore  [tex]a=\frac{1}{2}[/tex]

Option E) is correct.

Q&A Education