Respuesta :

Answer:

The factors of  [tex]2(x+y)^2-9(x+y)-5[/tex] is ((x+y)-5)(2x+2y+1)

Step-by-step explanation:

Given polynomial

=>[tex]2(x+y)^2-9(x+y)-5[/tex]

To Find:

The factors of the polynomial =?

Solution:

Lets assume  k = (x+y)

Then [tex]2(x+y)^2-9(x+y)-5[/tex] can be written as [tex]2k^2-9k-5[/tex]

Now by using quadratic formula

k =[tex]\frac{-b\pm\sqrt{(b^2-4ac}}{2a}[/tex]

where

a= 2

b= -9

c= -5

Substituting the values, we get

k =[tex]\frac{-b\pm\sqrt{(b^2-4ac)}}{2a}[/tex]

k =[tex]\frac{-(-9) \pm \sqrt{((-9)^2-4(2)(-5)}}{2(2))}[/tex]

k =[tex]\frac{-(-9) \pm \sqrt{(81+40)}}{4}[/tex]

k =[tex]\frac{-(-9) \pm \sqrt{(121)}}{4}[/tex]

k =[tex]\frac{-(-9) \pm 11}}{4}[/tex]

k= [tex]\frac{ 9 \pm 11}{4}[/tex]

k =  [tex]\frac{20}{4}[/tex]                         k =  [tex]\frac{-2}{4}[/tex]    

[tex]k_1 =5[/tex]                                      [tex]k_2 = -\frac{1}{2}[/tex]

[tex]2k^2-9k-5= 2(k-5)(k+\frac{1}{2})[/tex]

Solving the RHS we get

[tex]\frac{2}{2}(k-5)(2k+1)[/tex]

[tex](k-5)(2k+1)[/tex]

Substituting k = x+y

[tex]((x+y)-5)(2(x+y+1)[/tex]

[tex]((x+y)-5)(2x+2y+1)[/tex]

Q&A Education